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Starting from Schr6dinger equations with SU(2) group-theoretic potentials, we 
consider a general family of  kinks labeled by two (half-)integers (/, n) with In[ < l. 
A particular choice of  n = 0, l=  L (L positive integer) leads to a general L- 
family, where L = 1 corresponds to sine-Gordon theory, while L = 2 represents the 
(A.q~ 4)~ + 1 model. The (Z~b ~ + ~ model can also be recovered with l=  3/2, n = - 1/2, 
a particular case of theories labeled by l and n such that l -  n = 2 which possess 
simple kink solutions. We also discuss one-loop order corrections to the kink 
masses in supersymmetric versions of  the L-family. As a byproduct, we obtain 
the SUSY renormalization of  the so-called y parameter in sine-Gordon theory. 

Nonlinear field theories in (1 + 1) dimensions, with Lagrangian density 
5e = �89 - V[~b ], for which the classical equations of  motion exhibit 
time-independent but space-dependent solutions of finite energy, are widely 
in use. We recall the so-called kink solution in the (24b 4)~ + ~ model as well 
as the more restrictive case of solitons in sine-Gordon theory. We can take 
small quantum perturbations over the classical solutions so that a lineariz- 
ation limit of the general field equations provides the so-called stability 
equations. We can also take the inverse of this procedure: Starting from the 
stability equations, we can define general nonlinear field theories. In particu- 
lar, this program can be carried out for a general family of models labeled 
by a positive integer L, where L = 1 reproduces the sine-Gordon theory and 
L = 2 gives the (2q~4)~ + ~ model (Boya and Casahorran, 1989). 

In this paper we discuss how we can obtain stability equations in the 
first place. We first notice that the L-family of stability equations is nothing 
but the time-independent Schrrdinger equation with Prschl and Teller 
(1933) potential (up to a constant shift in the potential). This potential 
is a well-known soluble example. In view of recent work relating soluble 
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Schrrdinger equations with group theory (e.g., Giirsey, 1983), the P6schl- 
Teller potential is derived from the Casimir invariant of SU(2). We thus can 
obtain candidates of stability equations as soluble Schrrdinger equations 
derived from group theory. We thus propose a general method of generating 
nonlinear models from stability equations obtained from an arbitrary group. 

In the second part of the paper we consider the supersymmetric version 
of the L-family. In particular, we compute the one-loop correction to 
the kinks' classical masses using a unified treatment for both bosonic and 
fermionic contributions. As a byproduct we obtain the supersymmetry re- 
normalization of the 2, parameter in the sine-Gordon system. 

Let us now consider the stability equation for the L-family for positive 
integer L (Boya and Casahorran, 1989). Splitting the field as ~b=~c+tp, 
where ~bc is the classical kink solution and ~0 the perturbation, we get the 
stability equation 

[ _ ~ + m 2 L  2 m2L(L+I)_] 
cosh 2 mx J ~p,,(x) = co2.cp.(x) (1) 

with discrete spectrum c02. = m 2 [ L  2 - ( L -  n)2], n = 0, 1 . . . . .  L -  1. We point 
out that this is nothing but a one-dimensional time-independent Schr6dinger 
equation with an attractive P6schl and Teller (1933) potential, 

[ x ,  

with solutions gT(x)= P2(tanh x), where P'~(z) is an associated Legendre 
polynomial. Note that here we can have j half-integers as well as integers. 
It is well known that the j =  integer case gives no reflection, whereas the j = 
half-integer case gives maximum reflection (Morse and Feshbach, 1953). We 
also remark that the zero-mode solution of equation (1) is the highest weight 
solution of equation (2), namely P~(tanh x). These observations let us to 
conjecture the following ansatz: For each Schr6dinger equation associated 
with group-theoretic potential, there is a family of nonlinear models with 
kink solutions whose stability equations correspond to the given Schr6dinger 
equation. Furthermore, the zero modes of the stability equations are 
obtained from the highest weight solution of the Schr6dinger equation. 

In light of this we can understand the kink stability equation of the 
(~.~6)1 + l model (Lohe, 1979) as an SU(2) potential problem. In this model, 
there is the static solution 

q~c(x) = [ p (tanh px + 1)] 1/2 (3) 
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of mass M = gz/4s for the potential 

_ 3~z.~z(~.2 la~ 2 vt4> +, t y , /~,/!,>0 (4) 

The stability equation is the Schr6dinger equation with potential 

5~2 [ 3~ 2 15p 2 
V"[~bc(x)] tanh/~x (5) 

2 2 4 cosh 2/ix 

This potential problem has been solved (Morse and Feshbach, 1953). To 
reveal the SU(2) nature of the potential, let us consider the polynomial 
P~n(z) (Vilenkin, 1968). It is related to the Jacobi polynomials P(ka'~(z) and 
the associated Legendre polynomials P~(z) as follows: 

. ,  -11/2 
e(ka, O)(Z) = 2 m i  n - m ~ (l-- n)! (l + n)! .1 (1 -- z)(n- m)/2(1 + Z ) ( - n  - m) /2p lmn(Z  ) 

k(l-m)! (l+m)lJ 
(6) 

where 

l = k + - - ,  m = - ,  n = - -  (7) 
2 2 2 

and 

. 1/2 P~(z)=im[ (l+m)!] P / o ( Z ) ,  
L( / -m) ! /  

The differential equation for P~.( tanh x) is 

m~O (8) 

. d 2 1(/+1) 2mntanhx]P~,( tanhx)=_(m2+n2)Ptm,( tanhx ) (9) 
dx 2 cosh 2 x 

We now see that we obtain the zero mode of the stability equation for the 
(~L~b 6) 1 + 1 model for the choice of parameters l = 3/2, m = 3/2, and n = - 1/2. 
We thus observe that if we regard l and n as parameters, we get the zero- 
mode solution of the stability equation with maximum allowed value of m. 
So the zero mode will be proportional to 

i ' -"  I (21)! T/2., P;.(z)=~i- L(1-n~. (l+n)iJ tJ-z)('-")/:(l +z) (,+")/2 (10) 
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In particular, for the (~6)1 +1 kink, the zero mode is given by 

dr ~ (1 - tanh px)(1 + tanh ~x) ~/2 (11) 
dx 

which agrees with the derivative of equation (4). We point out, at least for 
the group SU(2), the existence of nonlinear field theories with stable kinks 
and stability equations with the group-theoretic potential. 

Now let us discuss the general (l, n) case. The zero mode is given by 

d4)--5,-, (1 - t a n h  X)(l-n)/2(1 + tanh x) (t+n)/2 (12) 
dx 

so we have the classical kink solution as 

r~c(y) - ~)c(yo) ~ dx(1 - tanh x)(t-n)/2(1 + tanh x) (t§ (13) 

0 

and the integration can be done with partial integration. As in Boya and 
Casahorran (1989) the supersymmetric quantum mechanical formulation of 
the stability equation relates the zero-mode solution to the superpotential 
W(x) as follows: 

exp[-f w(x) dx] =d(~cdx (14) 

l where W(x) = U'[~bc(x)], for ~ U[q~ ]2 = V[~b ]. Of particular interest are the 
theories with l -  n = 2. For  these cases we can have very simple kink solutions, 
labeled by l, 

~bc(x) = (1 + tanh x) > ~ (15) 

The potential for the theories is obtained using equation (14) as follows: 

V[q~ ]-- �89 1)2~b2(q~ '/~'-~) - -2 )  2 (16) 

where we have adjusted the integration constant so as to make the minimum 
of the potential to be zero. We see that l=  3/2 gives the q~6 potential and 
l = 2  the 4~ 4 potential. For larger values of l we have fractionally powered 
potentials, which are pathological, even though they do have well-defined 
kink solutions. 

Returning to the general L-family, we can consider the supersymmetric 
version of the model which appears in Boya and Casahorran (1989). In 
particular, the quantum corrections to the classical kink masses have been 
widely discussed by many authors (Schonfeld, 1979; Kaul and Rajaraman, 
1983). As a matter of fact, the kink mass receives nonzero quantum correc- 
tions, although the Witten-Olive bound remains saturated (Imbimbo and 
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Mukhi, 1984). Our next goal will be the first quantum correction to the L- 
dependent kink masses using a unified formula which only considers discrete 
levels of Schr6dinger equations. By reason of the supersymmetric properties, 
we finally find a simple expression that depends upon the zero-energy mode. 
In particular, we can make good use of the result associated to the L = 1 
case (sine-Gordon) in order to obtain the SUSY renormalization of the y 
parameter appearing in the S-matrix treatments (Zamolodchikov and 
Zamolodchikov, 1979). As a matter of fact, the actions we are looking for 
represent particular cases of  a SUSY o'-model (Imbimbo and Mukhi, 1984). 
On elimination of  the so-called "auxiliary field" we can write 

f[(~u( a )2+ (tr(iyu~)~t_ U2[~ ]_  U~[~b ] ~t~t] d2x (17) S =  

where ~b is a real scalar field, while ~ represents a Majorana field. The U 2 L 
term corresponds to the L-family scalar potential and the prime denotes a 
derivative with respect to the argument. In principle, we recall the bosonic 
stability equation over the kink, namely equation (1). Going to the fermionic 
fields, it suffices to write the spinor in its two-component form, 

~t(x, t) [v+(x)]  exp(ROrt) (18) 
= Lv-  (x )J  

to discover the hidden supersymmetric quantum mechanical character of the 
Dirac equation over the background provided by the scalar classical solu- 
tion. In our case we will have 

I d 2 m2L(L+I)7 . . 
-~x2+m2L 2 cosh~-m~ JVatX)=CO~Va(X), a =  + or - (19a) 

I d 2 m2r(L -1)-] . . 
--~x2+m2L2 cosh2m~'JV,,tx)=cO~Va(X), a = -  or + (19b) 

where the explicit a =  + or - identification in (19) depends on the 
Bogomolny condition sign. We can point out the discrete spectrum of (19b), 
namely C02Fn =m2[L 2 - (L-  n)2], n = 1 . . . .  , L -  1. In order to concoct a simple 
formula which provides us the first quantum correction to the classical 
kink mass in the SUSY case we only need the relation between the bosonic 
(fermionic) fluctuation modes in the continuum spectrum. Calling nF the 
fermionic density of states per wave number in the continuum, it can easily 
be found that (Imbimbo and Mukhi, 1984) 

1 nF = ~(n+ +n_) (20) 
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where n+ and n_ represent the densities associated with the Schr6dinger 
operators which appear in equation (19). With these data at hand we can 
write the SUSY version of the simple formula of Boya and Casahorran 
(1989). By reason of the supersymmetric properties of the model (the 1/2 
factor for the fermionic fluctuations and the duplication phenomena for the 
nonzero-energy eigenstates) we finally find that 

mL 
AM= - - -  (21) 

2~r 

Taking the L =  1 case, we obtain the correction associated with the sine- 
Gordon soliton, a result obtained in Lee et al. (1986) following the tedious 
phase shift and stability angles procedures. We recall the SUSY sine-Gordon 
theory, a model governed by the following Lagrangian density (Imbimbo 
and Mukhi, 1984) : 

~Q.Q~=~ {(O~u~ 2 ~u 2mall 

(22) 

Since SUSY does not modify the classical soliton mass, we can write at one- 
loop order that 

8m 
Msusv-  ~ (23) 

where 

~,/m 2 
~"= 1 - Z/16nm 2 (24) 

so that the supersymmetric effect modifies the 7/parameter with respect to the 
conventional sine-Gordon model result. The same phenomenon maintains its 
validity going to the SUSY breather or doublet solutions. Starting from the 
explicit classical solution (Dashen et aL, 1975) written in terms of period z" 
and dimensionless parameter ~= rnr/2tr, 

am ( sin(mt/~ .~ (25) 
~b~(x, t) = ~ tan -l ( f : -  1) 1/2 cosh[mx(f2_ 1)~/2/~] / 

the action per period would be 

Scl[~r]=~Icosh-l(~)-('2-1)l/21 (26) 
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while the "one-loop" effects transform equation (26) into 

Sq[~,r] : ~  COS -1 __(~2__ 1)1/2 (27) 
Y 

Resorting to the time-dependent WKB method, we can obtain the bound- 
state energy levels, namely 

16m sin ( N ~  8~: M s =  ~" \ 16 ] '  N = l , 2  . . . .  <--~ (28) 

In this paper we initiated a program of generating a family of nonlinear 
models with kink solutions whose stability equations obey Schrrdinger equa- 
tions with group-theoretic potentials. We have also considered supersym- 
metric versions of theories associated with SU(2). The next logical step 
would be to perform an analysis of the SUSY system using supergroups. 
Next, we know that the sine-Gordon equation is closely related to SU(2) 
affine Lie algebra, and that its soliton stability equation was an SU(2) poten- 
tial problem. There might be a relation between these two. If there is such 
a relation, it would be an interesting task to establish the connection between 
general Toda field theory associated with affine G Lie algebra and nonlinear 
soliton equations obtained from a stability equation with potential associ- 
ated with group G. Note that these theories intrinsically involve more than 
single scalar fields (Rajaraman, 1979). The first step would be to consider 
the stability equation derived from the Casimir operator of SU(3), which 
might give nonlinear theories involving two scalar fields. This work is the 
subject of our next investigation. 
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